Menu Close

MEMS传感器

MEMS传感器即微机电系统(Microelectro Mechanical Systems),是在微电子技术基础上发展起来的多学科交叉的前沿研究领域。经过四十多年的发展,已成为世界瞩目的重大科技领域之一。它涉及电子、机械、材料、物理学、化学、生物学、医学等多种学科与技术,具有广阔的应用前景。

截止到2010年,全世界有大约600余家单位从事MEMS的研制和生产工作,已研制出包括微型压力传感器、加速度传感器、微喷墨打印头、数字微镜显示器在内的几百种产品,其中MEMS传感器占相当大的比例。MEMS传感器是采用微电子和微机械加工技术制造出来的新型传感器。与传统的传感器相比,它具有体积小、重量轻、成本低、功耗低、可靠性高、适于批量化生产、易于集成和实现智能化的特点。同时,在微米量级的特征尺寸使得它可以完成某些传统机械传感器所不能实现的功能。

MEMS传感器应用

1.应用于医疗

MEMS传感器应用于无创胎心检测,检测胎儿心率是一项技术性很强的工作,由于胎儿心率很快,在每分钟l20~160次之间,用传统的听诊器甚至只有放大作用的超声多普勒仪,用人工计数很难测量准确。而具有数字显示功能的超声多普勒胎心监护仪,价格昂贵,仅为少数大医院使用,在中、小型医院及广大的农村地区无法普及。此外,超声振动波作用于胎儿,会对胎儿产生很大的不利作用。尽管检测剂量很低,也属于有损探测范畴,不适于经常性、重复性的检查及家庭使用。
基于VTI公司的MEMS加速度传感器,提出一种无创胎心检测方法,研制出一种简单易学、直观准确的介于胎心听诊器和多普勒胎儿监护仪之间的临床诊断和孕妇自检的医疗辅助仪器。
通过加速度传感器将胎儿心率转换成模拟电压信号,经前置放大用的仪器放大器实现差值放大。然后进行滤波等一系列中间信号处理,用A/D转换器将模拟电压信号转换成数字信号。通过光隔离器件输入到单片机进行分析处理,最后输出处理结果。
基于MEMS加速度传感器设计的胎儿心率检测仪在适当改进后能够以此为终端,做一个远程胎心监护系统。医院端的中央信号采集分析监护主机给出自动分析结果,医生对该结果进行诊断,如果有问题及时通知孕妇到医院来。该技术有利于孕妇随时检查胎儿的状况,有利于胎儿和孕妇的健康。

2.应用在汽车电子

MEMS压力传感器主要应用在测量气囊压力、燃油压力、发动机机油压力、进气管道压力及轮胎压力。这种传感器用单晶硅作材料,以采用MEMS技术在材料中间制作成力敏膜片,然后在膜片上扩散杂质形成四只应变电阻,再以惠斯顿电桥
应用在汽车中的MEMS传感器

方式将应变电阻连接成电路,来获得高灵敏度。车用MEMS压力传感器有电容式、压阻式、差动变压器式、声表面波式等几种常见的形式。而MEMS加速度计的原理是基于牛顿的经典力学定律,通常由悬挂系统和检测质量组成,通过微硅质量块的偏移实现对加速度的检测,主要用于汽车安全气囊系统、防滑系统、汽车导航系统和防盗系统等,除了有电容式、压阻式以外,MEMS加速度计还有压电式、隧道电流型、谐振式和热电偶式等形式。其中,电容式MEMS加速度计具有灵敏度高、受温度影响极小等特点,是MEMS微加速度计中的主流产品。微陀螺仪是一种角速率传感器,主要用于汽车导航的GPS信号补偿和汽车底盘控制系统,主要有振动式、转子式等几种。应用最多的属于振动陀螺仪,它利用单晶硅或多晶硅的振动质量块在被基座带动旋转时产生的哥氏效应来感测角速度。例如汽车在转弯时,系统通过陀螺仪测量角速度来指示方向盘的转动是否到位,主动在内侧或者外侧车轮上加上适当的制动以防止汽车脱离车道,通常,它与低加速度计一起构成主动控制系统。

3.应用于运动追踪系统

在运动员的日常训练中,MEMS传感器可以用来进行3D人体运动测量,对每一个动作进行记录,教练们对结果分析,反复比较,以便提高运动员的成绩。随着MEMS技术的进一步发展,MEMS传感器的价格也会随着降低,这在大众健身房中也可以广泛应用。
在滑雪方面,3D运动追踪中的压力传感器、加速度传感器、陀螺仪以及GPS可以让使用者获得极精确的观察能力,除了可提供滑雪板的移动数据外,还可以记录使用者的位置和距离。在冲浪方面也是如此,安装在冲浪板上的3D运动追踪,可以记录海浪高度、速度、冲浪时间、浆板距离、水温以及消耗的热量等信息。

4.应用在手机拍照领域

在MEMS Drive出现之前,手机摄像头主要由音圈马达移动镜头组的方式实现防抖(简称镜头防抖技术),受到很大的局限。而另一个在市场上较高端的防抖技术:多轴防抖,则是利用移动图像传感器(Image Sensor)补偿抖动,但由于这个技术体积庞大、耗电量超出手机载荷,一直无法在手机上应用。
凭着微机电在体积和功耗上的突破,最新技术MEMS Drive类似一张贴在图像传感器背面的平面马达,带动图像传感器在三个旋转轴移动。MEMS Drive 的防抖技术是透过陀螺仪感知拍照过程中的瞬间抖动,依靠精密算法,计算出马达应做的移动幅度并做出快速补偿。这一系列动作都要在百分之一秒内做完,你得到的图像才不会因为抖动模糊掉。
手机拍照带给我们随时随地的便捷,但是面对复杂的环境、多样的拍照场景,人手拍照有无法避免的抖动,像是走着跑着躺着拍照,或者把手伸长、手握自拍杆自拍,无论哪种抖动,凭借MEMS DRIVE马达独有的五轴防抖,和快速、精准控制的技术优势,都能呈现出更清晰更锐丽的图片 [1]  。

MEMS传感器研究现状

1、微机械压力传感器

微机械压力传感器是最早开始研制的微机械产品,也是微机械技术中最成熟、最早开始产业化的产品。从信号检测方式来看,微机械压力传感器分为压阻式和电容式两类,分别以体微机械加工技术和牺牲层技术为基础制造。从敏感膜结构来看,有圆形、方形、矩形、E形等多种结构。压阻式压力传感器的精度可达0.05%~0.01%,年稳定性达0.1%/F.S,温度误差为0.0002%,耐压可达几百兆帕,过压保护范围可达传感器量程的20倍以上,并能进行大范围下的全温补偿。现阶段微机械压力传感器的主要发展方向有以下几个方面。
(1)将敏感元件与信号处理、校准、补偿、微控制器等进行单片集成,研制智能化的压力传感器。
(2)进一步提高压力传感器的灵敏度,实现低量程的微压传感器。
(3)提高工作温度,研制高低温压力传感器。
(4)开发谐振式压力传感器。

2、微加速度传感器

硅微加速度传感器是继微压力传感器之后第二个进入市场的微机械传感器。其主要类型有压阻式、电容式、力平衡式和谐振式。其中最具有吸引力的是力平衡加速度计,其典型产品是Kuehnel等人在1994年报道的AGXL50型。
国内在微加速度传感器的研制方面也作了大量的工作,如西安电子科技大学研制的压阻式微加速度传感器和清华大学微电子所开发的谐振式微加速度传感器。后者采用电阻热激励、压阻电桥检测的方式,其敏感结构为高度对称的4角支撑质量块形式,在质量块4边与支撑框架之间制作了4个谐振梁用于信号检测。

3、微机械陀螺

角速度一般是用陀螺仪来进行测量的。传统的陀螺仪是利用高速转动的物体具有保持其角动量的特性来测量角速度的。这种陀螺仪的精度很高,但它的结构复杂,使用寿命短,成本高,一般仅用于导航方面,而难以在一般的运动控制系统中应用。实际上,如果不是受成本限制,角速度传感器可在诸如汽车牵引控制系统、摄象机的稳定系统、医用仪器、军事仪器、运动机械、计算机惯性鼠标、军事等领域有广泛的应用前景。常见的微机械角速度传感器有双平衡环结构,悬臂梁结构、音叉结构、振动环结构等。但是,实现的微机械陀螺的精度还不到10°/h,离惯性导航系统所需的0.1°/h相差尚远。

4、微流量传感器

微流量传感器不仅外形尺寸小,能达到很低的测量量级,而且死区容量小,响应时间短,适合于微流体的精密测量和控制。国内外研究的微流量传感器依据工作原理可分为热式(包括热传导式和热飞行时间式)、机械式和谐振式3种。清华大学精密仪器系设计的阀片式微流量传感器通过阀片将流量转换为梁表面弯曲应力,再由集成在阀片上的压敏电桥检测出流量信号。该传感器的芯片尺寸为3.5mm×3.5mm,在10ml~200ml/min的气体流量下,线性度优于5%。

5、微气体传感器

根据制作材料的不同,微气敏传感器分为硅基气敏传感器和硅微气敏传感器。其中前者以硅为衬底,敏感层为非硅材料,是当前微气敏传感器的主流。微气体传感器可满足人们对气敏传感器集成化、智能化、多功能化等要求。例如许多气敏传感器的敏感性能和工作温度密切相关,因而要同时制作加热元件和温度探测元件,以监测和控制温度。MEMS技术很容易将气敏元件和温度探测元件制作在一起,保证气体传感器优良性能的发挥。
谐振式气敏传感器不需要对器件进行加热,且输出信号为频率量,是硅微气敏传感器发展的重要方向之一。北京大学微电子所提出的1种微结构气体传感器,由硅梁、激振元件、测振元件和气体敏感膜组成。硅梁被置于被测气体中后,表面的敏感膜吸附气体分子而使梁的质量增加,使梁的谐振频率减小。这样通过测量硅梁的谐振频率可得到气体的浓度值。对NO2气体浓度的检测实验表明,在0×10~1×10的范围内有较好的线性,浓度检测极限达到1×10,当工作频率是19kHz时,灵敏度是1.3Hz/10。德国的M.Maute等人在SiNx悬臂梁表面涂敷聚合物PDMS来检测己烷气体,得到-0.099Hz/10的灵敏度。

6、微机械温度传感器

微机械传感器与传统的传感器相比,具有体积小、重量轻的特点,其固有热容量仅为10J/K~10J/K,使其在温度测量方面具有传统温度传感器不可比拟的优势。开发了1种硅/二氧化硅双层微悬臂梁温度传感器。基于硅和二氧化硅两种材料热膨胀系数的差异,不同温度下梁的挠度不同,其形变可通过位于梁根部的压敏电桥来检测。其非线性误差为0.9%,迟滞误差为0.45%,重复性误差为1.63%,精度为1.9%。

7、其他微机械传感器

利用微机械加工技术还可以实现其他多种传感器,例如瑞士Chalmers大学的PeterE等人设计的谐振式流体密度传感器,浙江大学研制的力平衡微机械真空传感器,中科院合肥智能所研制的振梁式微机械力敏传感器等 [2]  。

MEMS传感器的类别:

MEMS 传感器是采用微电子和微机械加工技术制造出来的新型传感器。它具有体积小、质量轻、成本低、功耗低、可靠性高、技术附加值高, 适于批量化生产、易于集成和实现智能化等特点。MEMS 传感器和IC芯片最大的区别在于:MEMS 是可动结构,利用微纳加工技术同时加工出机械结构和电路系统。如图1中所示,是目前市场中常见的一些MEMS传感器,并且随着MEMS传感器的不断发展,还出现了许多从前没有的MEMS传感器,如流体黏度传感器,密度传感器等等。

 MEMS传感器的分类
MEMS传感器的分类

图1 MEMS传感器的分类[1]

MEMS传感器的市场规模与发展

自2015年开始MEMS传感器市场规模稳步提升[2],产品需求大幅增加,在物联网的发展和智能终端领域也得到广泛应用,传感器产品需求大幅增加,重心逐渐转向技术含量较高的MEMS传感器领域。在 MEMS 传感器应用前景良好和国产化进程提速背景下,未来我国 MEMS 传感器市场前景广阔。前瞻产业研究院结合之前的发展数据预测,未来几年我国MEMS传感器市场规模年均增速保持在15%左右,预测到2025 年我国 MEMS 传感器市场将达到 1488.6 亿元[3]。

2015—2020年MEMS传感器市场规模

图2:2015—2020年MEMS传感器市场规模[2]

2020-2025年中国MEMS传感器行业市场规模预测
2020-2025年中国MEMS传感器行业市场规模预测

图3:2020-2025年中国MEMS传感器行业市场规模预测[3]

常见的MEMS传感器

以手机和汽车为例,根据博世的统计数据表示,2021年,一部5G手机大概消耗20个MEMS传感器,一辆汽车,大概消耗50个以上MEMS传感器,其中加速计、压力传感器、陀螺仪的应用合计占比超过95%,接下来,对这些常见的MEMS传感器进行一个简单的介绍

(1).MEMS压力传感器

压力传感器作为MEMS的头号传感器,在市场中占有巨大的份额,MEMS压力传感器是一种薄膜元件,受到压力时会产生变形,常常通过压阻或者电容的形式将形变转化为电信号,再经过过转换元件和转换电路,输出与压力成线性关系的电流或者电压信号。压阻式和电容式这两种方法都很流行,在工艺和性能上,压阻式工艺复杂,温度特性较差,电容式除了具有低温度系数,零静态功耗等优势,还具有灵敏度高、线性度好、后续处理电路易于设计等优点,此外,除了电容式和压阻式外,还有谐振式压力传感器等其他工作原理的MEMS压力传感器。MEMS压力传感器的应用领域包括:汽车、医疗和工业等,典型的应用比如:汽车的胎压监测

(2).MEMS加速度传感器

加速度传感器的原理随其应用而不同,有压阻式,电容式,压电式,谐振式等。已压阻式MEMS加速度传感器为例,其制作方法,是通过注入、推进、氧化的创新工艺来制作压敏电阻;采用KHO各向异性深腐蚀来形成质量块;并使用AES来释放梁和质量块;最后利用键合工艺来得到所需的“三明治”结构[4]。

MEMS压阻式加速度传感器结构

图4:MEMS压阻式加速度传感器结构[4]

(3)MEMS陀螺仪

微机械陀螺仪的设计和工作原理可能各种各样,但是公开的微机械陀螺仪均采用振动物体传感角速度的概念。利用振动来诱导和探测科里奥利力而设计的微机械陀螺仪没有旋转部件、不需要轴承,已被证明可以用微机械加工技术大批量生产,一般的微机械陀螺仪由梳子结构的驱动部分和电容板形状的传感部分组成,有的设计还带有去驱动和传感耦合的结构。MEMS陀螺仪常用于汽车旋转速度的测量,与加速度传感器一起组成主动控制系统。

 

(4).MEMS黏密度传感器

黏密度作为流体的重要特性,描述了流体的流动特性和质量关系,目前市面上的黏密度计,主要针对的应用领域包括:实验室测量,流体粘度、密度、浓度、质量监测/测量等,比较典型的包括:燃油质量监测,食品包装气监测,焊接气体浓度监测,医药生产链的材料流体密度、浓度监测等等,与传统的黏度测量方法(毛细管法、落球法和旋转法等)和密度测量方法(气量计、比重瓶和浮力法等)不同,MEMS黏密度传感器常用的测量原理是采用谐振式的微悬臂梁结构,通过让流体与悬臂之间发生谐振,利用谐振频率与流体粘密度间关系,结合转换模块,将流体的黏密度数据转换为数字信号。(图为MEMS黏密度传感器的芯片)

MEMS黏密度传感器芯片,其长宽小于10mm x 10mm
MEMS黏密度传感器芯片,其长宽小于10mm x 10mm

图5:MEMS黏密度传感器芯片,其长宽小于10mm x 10mm

 

参考文献:

[1]王淑华. MEMS传感器现状及应用[J]. 微纳电子技术,2011,48(08):516-522.

[2]韩允. MEMS传感器的发展概况[J]. 电子产品世界,2019,26(01):4-8.

[3] 本土传感器产业现状、挑战与建议 作者:李晨光

https://www.eefocus.com/sensor/462503?utm_source=zhihu&utm_medium=cpc&utm_campaign=zhihu20200306

[4] MEMS加速度传感器的原理与构造介绍 传感器技术

http://m.elecfans.com/article/596137.html
————————————————
版权声明:本文为CSDN博主「虹科—传感器事业部」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/HongKe_Sensor/article/details/109839752

Entires个相关

本文内容除特别注明外均取自各新闻媒体,见本站底部。并不代表本网立场!

发表回复

Leave the field below empty!